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where

Le=(et A== 0)L widul + L pdohs= (B=o) 550

Ly= @481~ =) L+ (x4t B D13 B (B ) B30

/]
= 7)%, B =g—ﬁ—, « and B are arbitrary parameters.

Beam-Warming method

A

(l + —g-#ysyB")(l + —’23- BaBxA® )u'""

= (L LA B)(1+ Zpdar)ur—pledir+ ) (6183
Here, we have chosen «=§ in (6.182). |

Example 6.6 Solve the initial boundary value problem
‘ ou, 0fur\, 0fu?
ﬁr’fa—x(ﬂ*@ 7)o
u(x, ,1’,0)--—;-(x+y)2 0<xy<I

u(0, y, 1) = (]—_“—'-:-291-'2- )2

u(x, 0, t)= (_l_:_(_l_Jrr_J_cL)‘_’2 )z

using the MacCormack method with4=1/3 and p=1/2.

The nodal points are
xi=1h, 0! <3
Ym=mh, S 0<Sm<3
tn=nk, n=0,1,2, ...

The initial and boundary conditions become

Ulm = %(Hm)’h’ 0<I,m<3

n - 12 \2
. t(o,m-(l (l-l;'rl:mhk) ) ’

o - 12 \2
(e
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central grid point. Accurate results are obtained for p=1, 4 and 8 when B/
lies in the range 6.0 <B /e < 8.0,1.3 <B/x < 1.6 and 1.1 < B/x < 1.25res-
pectively. It is set\m\(hat for fixed p, a value of B/« in the given range can be
found which has an accuracy better than the results given in Table 6.8. The
errors in the solution using the Beam-Warming method (x =), are higher
than the results obtained here.

Bibliographical Note

The excellent texts dealing with the numerical solutions of the hyperbolic
equations are 9, 96, 184 and 203. The stability of the linear finite difference
equations is discussed in 168. The high order difference schemes are given
in 80, 126 and 129. The difference schemes for the second order hyperbolic
differential equations with variable coefficients and with or without mixed
derivatives are studied in 44, 169, 180:and 181. The solution of one dimen-
sional wave equation under derivative boundary conditions has been exa-
mined in 150.

The LOD method for obtaining the numerical solution of the hyperbolic
equations in two and three space dimensions is given in 98, 130 and 215.

The explicit and implicit difference schemes for the system of hyperbolic
equations are discussed in 2, 96,99, 116, 159, 167, 176, 178, 179, 202, 204,
210, 225, 232 and 239. The Kreiss stability analysis of the difference schemes
is given in 1, 16, 90, 95, 105 and 158. ‘

1 roblems

1. The function u(x, ) satisfies the differential equation

2u %
5;5 = rxz-i-cu

with boundary conditions

u=0forx=0and x=1,7 > 0
Let v and du/d¢t be prescribed for t1=0,0 < x < 1.
(i) Derive the difference scheme by replacing the derivatives by central
differences. '
(ii) Obtain the principal part of the truncation error.
(iii) Determine the stability criterion of the difference scheme.

2. - The differential equation
o2y
e = 2 +cu
is approximated by the difference scheme
(1 + 7801820, = p28auly, + cp*hPutm
where 7 is arbitrary, p=k/h and c is a constant.
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Use the explicit method

umt' =201 ~ PPVt -+ pHm—1 + um+|) um !

and central difference approximation for the derivative conditions, to
calculate a solution for 0 < x < 1 and 0 <t<0.5with h=k=.1.

8. The first and second Lees ADI methods for solving the equation
%u_ Py Pu
= et g
can be written as '
() u*ih =2l m— Ul'm +p28,,r ¥ + (L= 27Ul m +nulm]
+p8J[(1 = 200 m + 200}

Uim =¥+ Pl — !
and
(i) u*Tm' = 2ulm—tiim +pOmu* i + (1 = 20)ufm+ '] + P82 Ufm

U7+ = u*l m + ")pzsz(ul.m - 2“1.»' + ul.m )

where 7 is arbitrary.
Determing the uniform difference schemes in (i) and (ii). Show that
the principal parts of the truncation error and the stability criteria
are the same for both methods.
9. Write the first and second one parameter Lees ADI methods for the
solution of the wave equation
3211 32u 0%u
il x’ p) yz+ cu
Determine the order of accuracy and the stability criterion tor both
methods. _ ‘
10. The first and second Lees ADI methods for the equation
%y Pu + 33u 0y
2" Ox2 7 922
are of the form
() ut¥ =2y — 1 p283 [ttt (1 = 29)un + )
+ 38} + 8DI(1 — 2+ 2mun-1]
wrentl = et pz,rs}(unnﬂ — 1)
Ut = g rintt g pz,,sg(unél__ u*1)
and -
(i) a1 = 2um = 1 4 p83 (1 — 20)un+ mun-1] — A2+ D)y
ui#u-H p— uin+l + npzsy(unﬂl -— 2un+ un—l) _

Ut = gentd 282t gy 1)




